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Abstract

A stability analysis of the one-dimensional Oberbeck–Boussinesq equations has been done. It is shown, that the

increase of the evaporation rate is result of the instability of the natural convection flow. Velocity parameter of this flow

is obtained on the basis of experimental data.
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1. Introduction

In the first paper [1] it was demonstrated that in the

case of evaporation of liquid (H2O, CH3OH, C2H5OH,

i-C3H7OH) in gaseous phase of an inert gas (N2, He, Ar)

a Stephan flow occurs [2] and the evaporation rate has

both components: a diffusive component and a convec-

tive one. The mathematical model (one-dimensional

Oberbeck–Bousinesq equation [3,5]) of the process is:
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where t (s) is the time, z (m) is the vertical coordinate

oriented normally to the liquid surface (z ¼ 0).

The analysis of [1] takes into consideration that the

thickness of the diffusion boundary layer upon a non-

stationary diffusion d ¼
ffiffiffiffiffiffiffi
Dt0

p
is greater than the depth

of the gaseous phase, l ¼ 0:257 m.

The comparison of the theoretical results of [1]

and the experimental data, published in [4], indicated

that the relationship related the rate of the non-sta-

tionary diffusion (J , kg/m2s) is zero about the t large

values, i.e.

t >
l2

D
; Q ¼

Z t

0

J dt ¼ const; ðd > lÞ: ð2Þ

In the former case, this can be explained by the con-

vective transport as a result of a Stephan flow and by a

natural convection contribution. The second situation

may be attributed to the saturation of gaseous phase by

the liquid vapours due to limited thickness l of the gas

phase. The effect of the natural convection may be

occurs as a result of random perturbations and their

growth should transform the system into a new stable

state. This needs a specific investigation of the stability

of the model (1), where the main process depends on the

Stephan flow, while the perturbations lead to a natural

convection.

2. Stability analysis

The stability of the evaporation process described

by the model (1) will be investigated by means of
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perturbations of the velocity ðv0Þ, pressure ðp0Þ and the

concentration ðc0Þ. Their superposition on the main

process leads to

vþ v0; p þ p0; cþ c0; ð3Þ

where (3) satisfies the model (1). The result of that are

two sets of equations:
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The dimensionless variables of (4) may be introduced

as:

t ¼ t0T ; z ¼ lZ; v ¼ u0V ; c ¼ c�C; ð6Þ

so the new form of the sets of equations becomes:
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The characteristic velocity of the flow as a result of

the Stephan flow is determined from the boundary

condition at the interface (z ¼ 0):
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This allows to determine also the orders of magnitudes

of the other parameters in (7):
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It is clear that from (7) and (9) neglecting the convective

terms may perform the solution of (4):
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The solution of (4) with respect to the concentration

(upon the condition (10)) can be obtained by Laplace

transformation [6] in the form:
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Nomenclature

c concentration in volume (kg/m3)

c� concentration at interface (kg/m3)

D diffusivity (m2/s)

g gravity (m2/s)

J evaporation rate (kg/m2 s)

l depth of the gas phase (m)

p pressure (kg/m s2)

Q amount of the evaporation liquid (kg/m2)

t time (s)

t0 characteristic time (s)

u0 characteristic velocity (m/s)

v velocity (m/s)

z coordinate (m)

a qv � q0=qv

# kinematic viscosity (m2/s)

p 3.14

q0 density of the gas (kg/m3)

qv density of the vapours (kg/m3)
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and the velocity of the Stephan flow is
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The solution of (5) will be derived in the form of

‘‘normal’’ perturbations:

v0 ¼ v1ðz; tÞ expð�ktÞ;
p0 ¼ p1ðz; tÞ expð�ktÞ;
c0 ¼ c1ðz; tÞ expð�ktÞ;

ð14Þ

where v1, p1, and c1 are amplitudes of the perturbations.

The problem concerning the determination of v1, p1,
and c1 is an eigenvalue problem, where k is the eigen-

value while v1, p1, and c1 are the eigenfunctions. The

solution will be derived in the form of ‘‘neutral’’ per-

turbations, whose amplitudes neither attenuate nor grow

with the time, i.e. eigenfunctions at k ¼ 0. Thus, from (4)

and (5) it becomes that:
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The solution of (15) will be performed by means of di-

mensionless variables:

t ¼ t0T ; z ¼ l1Z1; v ¼ u1V ; v1 ¼ u1V1; c ¼ c�C;

c1 ¼ c�C1; p ¼ q0u
2
1P ; p1 ¼ q0u

2
1P1: ð16Þ

The substitution of (16) into (15) leads to:
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It is possible to suggest that in (17) the process is limited

by the natural convection and the velocity at the inter-

face, i.e.

#u1q0
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This permits to define the characteristic parameters (the

velocity and the thickness of the boundary layer) and

their orders of magnitudes:
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The expressions (19) permit to define the order of

magnitude of the dimensionless parameters of (17) too:
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This allows to express (17) in a zero-order approxima-

tion with respect to the small parameters (20):

o2V1
oZ2

1

¼ C þ C1;

o2C1

oZ2
1

¼ 0;

Z1 ¼ 0;
oC1

oZ

� �
Z¼0

¼ �V1ð0; T Þ; C1 ¼ 0;

Z1 ¼ 1; V1 ¼ C1 ¼ 0:

ð21Þ

The concentration c ¼ c�C in (21) varies within a layer

with thickness of d 	 10�2 m (see (6)), while the con-

centration c1 ¼ c�C1 varies within the rage defined by a

layer of depth l 	 10�4. Thus, the form of (24) allows to

introduce for the surface concentration C ¼ 1.

The solution of (24) concerning C1 may be obtained

with accuracy defined by an arbitrary function V1ð0; T Þ:
C1 ¼ ð1� Z1ÞV1ð0; T Þ: ð22Þ

The solution concerning the velocity can be obtained in

a similar manner:
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3. Comparison with experimental data

The velocity V1ð0; T Þ ¼ v1ð0; tÞ=u1 cannot be deter-

mined theoretically by (22) and (23) upon the assump-

tions of the linear theory of stability. However, it is

possible to establish it from experimental data.

If suppose, that the velocity of disturbance v1ð0; tÞ
differs from the velocity of the main flow only the indi-

vidual effects scales, and it could be obtain it:
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where l1 ¼ bl, while the parameters b, c and e should be

obtained from experimental data.

The mass transfer rate upon evaporation depends on

both the diffusion and the convective transports through

the liquid–gas interface:
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The introduction of (12) and (25) into (26) leads to:
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Taking into account that

q� ¼ q0 þ ac� ¼ c�0 þ c�; ð28Þ

it is possible to find the amount of the evaporated liquid

through (27):
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The experimental data concerning evaporations of var-

ious liquids in [4] permit the determination of the values

of b, c and e. During the calculation of the sums in (29)

been three to four terms was required for the first sum

and six to eight terms for the second sum.

Figs. 1–6 show the comparison of the values of Q
determined through (29) and the experimental data of
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Fig. 1. Evaporation in system H2O–N2.
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Fig. 2. Evaporation in system H2O–He.
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Fig. 3. Evaporation in system H2O–Ar.
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Table 1

Characteristic parameters of the gas–liquid system (20�)

Parameters Systems

H2O/N2 H2O/He H2O/Ar CH3OH/Ar C2H5OH/Ar iC3H7OH/Ar

D� 105 (m2/s) 2.41 8.86 2.57 0.98 1.00 0.846

q0 (kg/m3) 1.16 0.16 1.66 1.66 1.66 1.66

c� (kg/m3) 0.0142 0.0143 0.0161 0.142 0.0995 0.0939

c�0 (kg/m3) 1.13 0.162 1.66 1.48 1.57 1.63

Ae � 104 (kg/m2 s1=2) 2.051 1.633 2.190 19.47 3.963 3.287

A� 104 (kg/m2 s1=2) 0.954 1.94 0.961 5.92 4.28 1.57

b 0.332 0 0.332 0.332 0 0

c 1.70 0 1.7 1.7 0 0

e 2.40 0 2.40 2.40 0 0

q0=c
�
0c

�
0 1.02 1.02 1.02 1.12 1.05 1.04

a )0.555 0.778 )1.216 )0.246 0.133 0.335
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Fig. 7. Evaporation in system CH3OH–Ar ðc ¼ 2:4; b2 ¼
0:049; e ¼ 3:08Þ.
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Fig. 6. Evaporation in system C3H7OH–Ar.
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Fig. 4. Evaporation in system CH3OH–Ar.
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Fig. 5. Evaporation in system C2H5OH–Ar.
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[4]. The corresponding values of b, c and e are available
in Table 1.

The effect of the Stephan flow is determined by the

ratio q0=c
�
0, which values are shown in Table 1. The re-

sults obtained show, that the Stephan flow is the largest

at the evaporation of CH3OH.

The values of Q from (29) at b ¼ 0:221; c ¼ 2:4;
e ¼ 3:08 for evaporation of CH3OH are shown in Fig. 7.

4. Conclusions

The results developed here indicate that the evapo-

ration rate from a stagnant liquid into a gaseous layer

having a limited depth is controlled by the rate of the

non-stationary diffusion between both surfaces. The

concentrations of the vapours at the liquid surface is

practically constant, while the upper boundary of the

gaseous layer is impermeable for the vapours (i.e. dif-

fusion flux is zero). This effect is augmented by the

contribution of a convective transport in the gaseous

pash. The later contributes both the Stephan flow and

the natural convection. The Stephan flow occurs due the

phase transition at the interface, while the natural con-

vection is provoked by the loss of stability of the entire

process as a result of the growth of small perturbations.

The latter leads to a self-organization of the system and

a formation of dissipative structures.

It can be seen from Table 1 that in the cases when the

vapours of the liquid are weightier than the inert gas

(H2O/He, C2H5OH/Ar, i-C3H7OH/Ar) the process is

stable ðb ¼ c ¼ e ¼ 0Þ and the rate of the evaporation

could be determined from the non-stationary diffusion

rate (increased with 2–5% by the Stephan flow effect––

q0=c
�
0).

The process is unstable when the vapours are lighter

then gas. In these conditions a natural convection is

appeared as a result of the instability. Thus the evapo-

ration rate (c ¼ 1:70) is essentially increased which is 2.7

times larger than the diffusion rate.

It is important to note, that the parameters of the

dissipative structure (as a result of instability) are equal

(b ¼ 0:332, c ¼ 1:7, e ¼ 2:4) for different liquid gas sys-

tems (H2O/N2, H2O/Ar, CH3OH/Ar). The deviation of

the system CH3OH/Ar could be a result from experi-

mental errors.
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